

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 1 of 13

Command Line Interface

Manual

The Pure Photonics Command Line Interface is a utility to communicate with OIF MSA

based tunable lasers over a serial port. It includes commands to address all standardized

registers and also specific commands to access Pure Photonics’ specific functionality.

This manual describes the commands with a focus on the use with Pure Photonics lasers.

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 2 of 13

1. Table of Contents
1. Table of Contents ... 2

2. Software usage ... 3

3. Usage ... 4

4. Commands ... 5

5. Registers .. 10

6. Creating custom commands ... 12

7. Running scripts ... 13

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 3 of 13

2. Software usage
The software can be downloaded from the Pure Photonics website (purephotonics.com)

under the support section.

No installation is needed. The unzipped directory can be placed at any location.

The software is run by double clicking the ‘Pure Photonics CLI.exe’ file.

This manual is based on the software version 3.2.10. This version is written in the

Python 3 language and operates with the Windows 11 operating system (previous

versions did not operate with Windows 11) and earlier versions. This version does not

work with a Linux operating system.

In addition, this version works with COM ports with numbers larger than 9 and it can

handle both textual com-ports (such as ‘com8’) and numbered ones (e.g. 8).

Also, a help function has been added by typing ‘it.help()’ after connecting to a serial

port.

The software has a built in feature to check for updates every 30 days. This can be

delayed to the next use or for a further 30 days at each occasion You can also manually

check the latest release at https://purephotonics.com/CLI_VERSION_STATUS . If a

new version is available the user can manually download this from

https://purephotonics.com/support/ under ‘software’ and ‘CLI’.

https://purephotonics.com/CLI_VERSION_STATUS
https://purephotonics.com/support/

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 4 of 13

3. Usage
A connection with a serial port is set up with the it.connect(port,baud) command or the

it.connectCoBrite(port)/it.connectDX(port,chassis,slot,device) command (in case of a

CoBrite unit). Port is the COM port number of the serial port. Entries such as 8 or ‘COM8’

are both accepted. Baud is the baudrate. For most units it would typically be 9600, but

could be as high as 115200. For the CoBrite unit the default communication baudrate is

115200 (though note that internally in the CoBrite unit the communication rate is 9600).

The connection is disconnected through the it.disconnect() command. Note that a serial

port can only be accessed by one client at a time, so the disconnect command needs to

be used before accessing with a different application. Closing a CLI window also closes

the connection to the serial port.

Several CLI windows can be opened at the same time to access different serial

connections. Only one serial connection can be accessed at a time in the same window.

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 5 of 13

4. Commands
The following commands are available through the CLI, after connecting to the serial port.

Each command starts with it. .

Command Return

General commands

connect(port=1, baud=None)
General; Connect to a serial port. When baud is not give,
it will try to auto detect.

connectCoBrite(port=1) General; Connect to a CoBrite port.
connectDX(port=1, chassis=1, slot=1,
device=1) General; Connect to a DX port.

disconnect() General; Disconnect from port.

help() General; Provide help index

flushBuffer() General; Read all bytes in receive queue and discard

reset() General; Resynchronize the transmit and receive buffer
upgrade(target, filename,
version='Interrupting') General; Upgrade firmware

script(filename, echo=False)
Opens a filename and runs it line by line; if echo is True
the window will also echo the command.

OIF commands

aeaEa() Read only; AEA EA register

aeaEac() Read only; AEA EAC register

aeaEar(write=False) Read only; AEA EAR register

age() Read only; Get laser age in percentage
almT(wvsf=None, wfreq=None,
wtherm=None, wpwr=None, fvsf=None,
ffreq=None, ftherm=None, fpwr=None) Read/Write; Set/Get alarm triggers

baudrate(baudrate=None)

Read/Write; Compound command; Set/Get (integer)
baud rate and reconnect with new baud rate, return tuple
(status_string, baud_rate)

channel(channel=None)
Read/Write; Compound command; Set/Get channel1 and
channel2

channel1(channel=None) Read/Write; Set/Get lower 2 bytes of channel

channel2(channel=None) Read/Write; Set/Get upper 2 bytes of channel (MSA1.3)
ctemp() Read only; Get current temperature in degreeC*100

currents() Read only; Device currents in mA*10

devTyp() Read only; Device Type

ditherA(gain=None) Read/Write; Get/Set dither gain in percent

ditherE(wf=None, de=None) Read/Write; Get/Set dither enable

ditherF(width=None) Read/Write; Get/Set dither width in GHz * 10

ditherR(rate=None) Read/Write; Get/Set dither rate in KHz
dlConfig(init_write=None, abrt=None,
done=None, init_read=None,
init_check=None, init_run=None,
runv=None, type=None) Read/Write; dlConfig register

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 6 of 13

dlStatus() Read only; dlStatus register

ea() Read only; AEA EA register

eac() Read only; AEA EAC register

ear(value=None) Read only; AEA EAR register

fAgeTh(threshold=None)
Read/Write; Get/Set fatal laser age threshold in
percentage

fFreqTh() Read/Write; Get fatal frequency threshold in GHz*10

fPowTh(dB100=None) Read/Write; Set/Get fatal power threshold in dB*100

fThermTh() Read/Write; Get fatal thermal threshold in degC*100
fatalT(wvsfl=None, wfreql=None,
wtherml=None, wpwrl=None, mrl=None,
fvsfl=None, ffreql=None, ftherml=None,
fpwrl=None) Read/Write; Set/Get fatal triggers

fcf(frequency=None)
Read/Write; Compound command; Get/Set first channel
frequency in THz (fcf1, fcf2, fcf3)

fcf1(fTHz=None) Read/Write; Get/Set first channel frequency THz portion

fcf2(fGHz10=None)
Read/Write; Get/Set first channel frequency 100MHz
portion

fcf3(MHz=None) Read/Write; Get/Set first channel frequency MHz portion

ftf(MHz=None) Read/Write; Get/Set the fine tune frequency in MHz

ftfR() Read only; Get maximum range for FTF (MHz)

genCfg(sdc=None) Read/Write; Set/Get General Module Configuration

grid(frequency=None) Read/Write; Get/Set grid spacing in GHz*10

grid2(frequency=None) Read/Write; Get/Set grid2 spacing in MHz (MSA1.3)

health()
Read only; Get the health status (status_string, 16bit
status report)

ioCap(baudrate=None,
module_select_no_reset=True) Read/Write; Set/Get ioCap register (baudrate)

isLocked(timeout=25.0)
Read only; Query NOP unitl pending is cleared, timeout in
seconds. Return (boolean, lock_time_in_seconds)

lf()
Read only; Compound command; Get channel frequency
in THz (lf1, lf2, lf3)

lfh()
Read only; Compound command; Get laser last frequency
in THz in THz (lfh1, lfh2, lfh3)

lfl()
Read only; Compound command; Get laser first frequency
in THz (lfl1, lfl2, lfl3)

lgrid()
Read only; Get laser minimum supported grid spacing in
GHz*10

lgrid2()
Read only; Get laser minimum supported grid spacing,
MHz portion

lstResp() Read only; Last response register
mcb(sdf=None, adt=None,
autostart=None, whisperstart=None,
ditherreduce=None) Read/Write; Get/Set module configuration behavior

mfgDate() Read only; Manufacturing Date

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 7 of 13

mfgr() Read only; Manufacturer

model() Read only; Model

nop() Read only; NOP register

oop() Read only; Get optical output power in dBm*100

opsh() Read only; Get maximum power setting in dBm*100

opsl() Read only; Get minimum power setting in dBm*100

pwr(power=None) Read/Write; Get/Set power set point in dBm*100

read_string(byte_count=1) Read/Write; Read string directly from serial port

relBack() Read only; Release backwards compatibility

release() Read only; Release information

resena(sena=None, sr=None, mr=None) Read/Write; Get/Set reset/enable

serNo() Read only; Serial Number
srqT(dis=None, wvsfl=None,
wfreql=None, wtherml=None,
wpwrl=None, xel=None, cel=None,
mrl=None, crl=None, fvsfl=None,
ffreql=None, ftherml=None, fpwrl=None) Read/Write; Set/Get SRQ triggers
statusF(xel=0, cel=0, mrl=0, crl=0, fvsfl=0,
ffreql=0, ftherml=0, fpwrl=0) Read/Write; Get/Set status fatal
statusW(xel=0, cel=0, mrl=0, crl=0,
wvsfl=0, wfreql=0, wtherml=0, wpwrl=0) Read/Write; Get/Set status warning

temps() Read only; Device temperatures in C*100

toModulePacket() Read Only; Return last packet sent to module.

wAgeTh(threshold=None)
Read/Write; Get/Set warning laser age threshold in
percentage

wFreqTh() Read/Write; Get warning frequency threshold in GHz*10

wPowTh(dB100=None) Read/Write; Set/Get warning power threshold in dB*100

wThermTh() Read/Write; Get warning thermal threshold in degC*100

write_string(string) Read/Write; Write string directly on serial port

Pure Photonics Specific Registers

cleanMode(cleanmode=None) Read/Write; Get/Set Clean Mode
cleanJumpEnable(enable=None,
setchannel=0)

Read/Write; Enable/Disable Clean Jump (1/0) and select
channel.

CleanJumpOffset() Read only; Provides clean jump offset.

CleanJumpCalibrate(channels=None)
Read/Write; Starts calibration for number of channels or
return the current channel that is being calibrated.

cleanSweepAmplitude(amplitude=None) Read/Write; Get/Set Clean Sweep Amplitude (GHz)

cleanSweepEnable(enable=None) Read/Write; Enable/Disable Clean Sweep (1/0)

cleanSweepOffset() Read/Write; Get frequency offset (GHz * 10)

cleanSweepRate(rate=None) Read/Write; Set maximum sweep rate (GHz/sec)

cleanSweepTriggers(triggers=None) Read/Write; Set triggers for clean Sweep

ICR PPEB076 Registers (activate with it.setICR(True)

setICR(value) Write only; activates ICR commands.

ICRGain(ch=0, volts=None) Read/Write; Get/Set outut gain value

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 8 of 13

ICRMGCAGC(value=None) Read/Write; Get/Set manual and automatic gain mode

ICROutputAdjust(ch=0, volts=None) Read/Write; Get/Set outut adjust value

ICRPDMode(value=None) Read/Write; Get/Set Photodiode Mode

ICRPDValue(channel=0) Read only; Get photodiode current

ICRPeakV(channel=0) Read only; Get peak value

ICRShutdown(value=None) Read/Write; Get/Set shutdown

ICRTIA(channel=None) Read/Write; Get/Set TIA enable

ICRTIACurrent(channel=0) Read only; Get peak value

ICRVOA(value=None) Read/Write; Get/Set VOA voltage in V

ICRDEBUGGAIN(ch=0) Read only; Get ouptut gain settng (debug register)

ICRDEBUGOUTADJUST(ch=0) Read only; Get ouptut adjust settng (debug register)

ICRDEBUGRESISTANCE(ch=0, value=None) Read/Write; Get/Set resistance reading (debug register)

ICRDEBUGSAMPLE(value=0) Read only; Get sample reading (debug register)

Analog Array Registers (activate with it.setAnalogArray(True))

AAPower(ch=None)
Read only; read power on current channel or of specific
channel

AAVOAMode(ch=None,mode=None)

Read/Write; Get/Set VOA mode (0 for constant
absorption and 1 for constant power) for current channel
or for specific channel

AAVOAAbs(ch=None,dB=None)
Read/Write; Get/Set VOA absorption value (in dB) for
current channel or for specific channel

AAVOAPowerTarget(ch=None,dBm=None)
Read/Write; Get/Set power target (in dBm) for current
channel or for specific channel

AAPassthrough(array=0)
Write only; only for a system to bypass the controller and
speak with the array directly.

Legacy Registers (activate with it.setLegacy(True))

setLegacy(value)
Write only; Set Legacy status. By default False, True for
ITLA commands.

cleanJumpCurrent(mA10=None)
Read/Write; Set sled temperature of the next Clean Jump
step (1000*C)

cleanJumpGHz(GHz=None)
Read/Write; Set GHz portion of the next Clean Jump step
(10*GHz)

cleanJumpSled(Cdeg=None)
Read/Write; Set sled temperature of the next Clean Jump
step (1000*C)

cleanJumpTHz(THz=None)
Read/Write; Set THz portion of the next Clean Jump step
(THz)

cleanScanCalibration(factor1,
factor2=None) Write only; Load the calibration factors for Clean Scan (2)

cleanScanEnable(enable=None) Read/Write; Enable/Disable Clean Scan (1/0)

cleanScanOffset() Read/Write; Get frequency offset (GHz * 10)

cleanScanSetF1(degC=None)
Read/Write; Set target filter1 temperature for next center
point (C)

cleanScanSetF2(degC=None)
Read/Write; Set target filter2 temperature for next center
point (C)

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 9 of 13

cleanScanSetSled(degC=None)
Read/Write; Set target sled temperature for next center
point (C)

cleanSweepConstants(Tminus10, T0, T10,
T20, T30, T40, T50, T60, T70,
lowtempvalue, hightempvalue)

Write only; Provide calibration constants to the laser for
extended sweep (9 current values at different
temperatures [mA] and 2 correction factors in C/GHz)

noDriftMode(enable=None) Read/Write; Enable/Disable NoDrift Mode (1/0)

PPCL590 Registers (activate with it.setPPCL590(True))

PPCL590RMSValue(longterm=False)

Reads register 0x96 for the RMS frequency offset value;
False for integration over 1 second; True for integration
over 20 seconds

PPCL590Lockstate()
Reads register 0xfd with value 0x9000; provides the
lockstate of the PPCL590 lock

PPCL590PZTsignal()

Reads register 0xfd with value 0x9001; provides the DAC
value to the PZT which controls the fast frequency
correction; should be around 0x8000 when locked.

PPCL590Locksignal()

Reads register 0x93; provides the feedback signal received
from the photodiode. Target is 0x8000 in the PPCL590 and
could be a specified value in the external lock situation

PPCL590Outputsignal()

Reads register 0x93; provides the analog output signal;
For complex operation (such as the PPCL590 and complex
external lock) this will be larger than 0.

PPCL590Setfeedback(value=50)

Reads register 0xfd with value 0xe000+value; This
command should only be used by experienced users and
for external lock applications.

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 10 of 13

5. Registers
The OIF MSA defines the following registers:

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 11 of 13

Additional registers that are added on (some) Pure Photonics products are below. Please

refer to specific application notes and product capabilities to understand which registers

are applicable to specific firmware versions and devices.

Name R/W Description

0x90 RW Enable/disable whispermode

0x93 R Analog input (Clean Measurement)

0x94 RW Analog output

0x95 RW Dither reduction

0x96 R PPCL590 lock error

0x99 W Mode-offset in whispermode

0xD0 RW Select/Enable Clean Jump

0xD1 R Clean Jump offset

0xD2 RW Clean Jump Calibration

0xE4 RW Clean Sweep Range

0xE5 RW Clean Sweep Enable

0xE6 RW Clean Sweep Offset

0xE7 RW Clean Sweep Sweeprate

0xE8 RW Clean Sweep Triggers

0xF8 RW Analog FTF

0xFD RW Debug register

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 12 of 13

6. Creating custom commands
The underlying engine of the command line interface is the Python programming

language. Variables can be defined, as well as functions. Certain modules, such as e.g.

time can be imported.

For example the following line is checking the NOP response until the pending flags drop

before moving into whispermode.

goon=True

while goon:

 if it.nop()[1].data()&0xff00==0:

 time.sleep(5)

 it.cleanMode(2)

 goon=False

 time.sleep(1)

In case a register needs to be accessed that has no custom command, a variable can be

generated with a command packet. That packet can then be modified to access a different

register.

e.g.:

it.oop()

readpacket=it.toModulePacket()

readpacket.register(0x90)

it.packet(readpacket)

or

it.pwr(1350)

writepacket=it.toModulePacket()

writepacket.register(0x90)

writepacket.data(2)

it,packet(writepacket)

 Pure Photonics Confidential

Manual CLI 3.2.10 May 2025 Page 13 of 13

7. Running scripts
To make it easier to automate tasks in the CLI the user can define scripts that run a certain

task or define additional functions. A script is run with it.script(filename). This command

will execute each line in the text file as if it was typed in the interface. If the debug toggle

is set (it.script(filename,True)) then the command that is being executed is echo’ed.

The script is automatically split up in segments. That means that function definitions are

executed as a whole and e.g. while loops are also operated as a loop. But separate lines

(without indent) are all executed separately.

A user can create its own segmentation by adding ‘#CUSTOMSPLIT’ at the top of the file

(only having this would make the file executed as a whole) and addeing ‘#SPLIT’ lines at

each split point.

Once executing the script a window will pop up with the results of the execution. This

window can be closed at any time, but will pop up again after completion of each segment.

Note that the script execution is sensitive to typos and logical errors. Letting the script run

in segments will help you to more easily find troublesome segments.

